所有文章 > 当前标签:RAG

RAG响应速度测试的深度分析与应用
2025/01/25
本文深入分析了RAG响应速度测试的重要性和实施方法。RAG技术结合信息检索与生成模型,提高了用户体验和信息处理效率。在测试中,响应速度是关键指标,直接影响用户满意度。文章探讨了测试的策略与方法,包括制定测试策略、准备测试数据、搭建测试环境,以及选择合适的测试工具,如JMeter和Locust。通过响应速度测试,可以发现RAG系统的性能瓶颈,并采取优化措施提升系统性能。

大模型RAG技术:从入门到实践
【日积月累】
大模型RAG(Retrieval-Augmented Generation)技术通过结合检索和生成能力,提升了大型语言模型的功能。其核心在于利用检索模块从知识库中提取信息,增强生成模型的准确性和时效性。RAG在开放式问答、垂直领域问答和对话系统中表现出色,克服了LLMs存储容量有限和知识更新滞后的挑战。学习RAG技术需关注数据质量、生成模型选择,并持续优化策略,以充分发挥其优势。
2025/01/24

RAG实现高效搜索定位:表格文档处理优化方案
【日积月累】
在处理包含大量表格的文档时,传统RAG系统往往难以准确检索和生成内容。文章提出了一个四步法来实现"RAG实现高效搜索定位":通过精确提取表格、添加上下文描述、统一格式化为Markdown,以及创建统一嵌入向量来优化检索效果。实验表明,这种方法显著提升了对复杂表格文档的处理能力。
2025/01/09

Github上的十大RAG(信息检索增强生成)框架
【AI驱动】
信息检索增强生成(Retrieval-Augmented Generation,简称RAG)是一种强大的技术,能够显著提升大型语言模型的性能。RAG框架巧妙地结合了基于检索的系统和生成模型的优势,可以生成更加准确、符合上下文、实时更新的响应。随着对先进人工智能解决方案需求的不断增长,GitHub上涌现出众多开源RAG框架,每一个都提供了独特的功能和特性。
2024/11/20

通过上下文检索优化RAG的语境理解
【AI驱动】
无论你的模型(大型语言模型LLM)有多先进,如果上下文信息块没有提供正确的信息,模型将无法生成准确的答案。在本教程中,我们将探索一种称为上下文检索的技术,以提高你的RAG系统中上下文信息块的质量。
2024/11/15

关于 RAG 您需要了解的一切
【AI驱动】
随着企业和人工智能专家寻求更智能的信息处理方式,RAG 将检索系统的丰富知识和生成模型的创造力这两个方面的优势结合在了一起。但究竟什么是 RAG,为什么每个人都在谈论它 ?
2024/10/23

从 RAG 到财富:为什么检索增强一代在 RAG 与微调之争中获胜?
【AI驱动】
您的人工智能计划呢?您的数据团队如何才能从LLM获得价值?这就是 RAG vs. Fine-Tuning 这两个有前途的 GenAI 开发和优化框架的用武之地。
2024/10/21

一文搞懂生成式检索增强
【AI驱动】
这篇博文探讨了与生成式人工智能相关的挑战、检索增强生成 (RAG) 如何帮助克服这些挑战、RAG 的工作原理以及使用 RAG 的优势和挑战。
2024/09/19

未来已来:探索检索增强图像生成
【AI驱动】
检索增强图像生成技术结合信息检索与图像生成,利用外部知识库提升图像质量与相关性,处理复杂文本,减少幻觉,增加多样性,确保图像与文本一致性,提供丰富视觉体验。
2024/08/21

检索增强生成技术:RAG API如何优化大语言模型
【AI驱动】
检索增强生成(RAG)是指对大型语言模型输出进行优化,使其能够在生成响应之前引用训练数据来源之外的权威知识库。
2024/08/01

大模型、RAG、Agent、知识库、向量数据库、知识图谱、AGI:区别与联系
【AI驱动】
在 AI 大模型的推理基础上,通过 RAG、Agent、知识库、向量数据库、知识图谱等技术手段实现了真正的 AGI(通用人工智能)。
2024/06/12

大模型从原理到应用开发——提纲挈领,十问十答
【AI驱动】
本文是 新加坡科研局首席AI研究员黄佳 在CSDN直播间主题分享的文字版。
2024/06/12
搜索文章