所有文章 > 如何集成API > 构建基于Claude MCP的天气查询智能体 | 实战落地示例
构建基于Claude MCP的天气查询智能体 | 实战落地示例

构建基于Claude MCP的天气查询智能体 | 实战落地示例

关键词: Claude MCP 天气API

1、背景

之前我们在《MCP(Model Context Protocol) 大模型智能体第一个开源标准协议》一文中,介绍了MCP的概念,虽然了解了其概念、架构、解决的问题,但还缺少具体的示例,来帮助进一步理解整套MCP框架如何落地。

今天我们基于claude的官方例子–获取天气预报【1】,来理解MCP落地的整条链路。

2、MCP示例

该案例是构建一个简单的MCP天气预报服务器,并将其连接到主机,即Claude for Desktop。从基本设置开始,然后逐步发展到更复杂的使用场景。

大模型虽然能力非常强,但其弊端就是内容是过时的,这里的过时不是说内容很旧,只是表达内容具有非实时性。比如没有获取天气预报和严重天气警报的能力。因此我们将使用MCP来解决这一问题。

构建一个服务器,该服务器提供两个工具:获取警报(get-alerts)和获取预报(get-forecast)。然后,将该服务器连接到MCP主机(在本例中为Claude for Desktop)。

首先我们配置下环境:

(1)安装uv

curl -LsSf https://astral.sh/uv/install.sh | sh

安装完成后,会提示:

downloading uv 0.6.9 aarch64-apple-darwin
no checksums to verify
installing to /Users/nicolas/.local/bin
uv
uvx
everything's installed!

(2)安装所需的依赖包

# Create a new directory for our project
uv init weather
cd weather

# Create virtual environment and activate it
uv venv
source .venv/bin/activate

# Install dependencies
uv add "mcp[cli]" httpx

# Create our server file
touch server.py

(3)在server.py中构建相应的get-alerts和 get-forecast工具:

from typing import Any
import asyncio
import httpx
from mcp.server.models import InitializationOptions
import mcp.types as types
from mcp.server import NotificationOptions, Server
import mcp.server.stdio
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"

#@server.list_tools() - 注册用于列出可用工具的处理器
#@server.call_tool() - 注册用于执行工具调用的处理器

server = Server("weather")

@server.list_tools()
async def handle_list_tools() -> list[types.Tool]:
"""
List available tools.
Each tool specifies its arguments using JSON Schema validation.
"""
return [
types.Tool(
name="get-alerts",
description="Get weather alerts for a state",
inputSchema={
"type": "object",
"properties": {
"state": {
"type": "string",
"description": "Two-letter state code (e.g. CA, NY)",
},
},
"required": ["state"],
},
),
types.Tool(
name="get-forecast",
description="Get weather forecast for a location",
inputSchema={
"type": "object",
"properties": {
"latitude": {
"type": "number",
"description": "Latitude of the location",
},
"longitude": {
"type": "number",
"description": "Longitude of the location",
},
},
"required": ["latitude", "longitude"],
},
),
]

async def make_nws_request(client: httpx.AsyncClient, url: str) -> dict[str, Any] | None:
"""Make a request to the NWS API with proper error handling."""
headers = {
"User-Agent": USER_AGENT,
"Accept": "application/geo+json"
}

try:
response = await client.get(url, headers=headers, timeout=30.0)
response.raise_for_status()
return response.json()
except Exception:
return None

def format_alert(feature: dict) -> str:
"""Format an alert feature into a concise string."""
props = feature["properties"]
return (
f"Event: {props.get('event', 'Unknown')}\n"
f"Area: {props.get('areaDesc', 'Unknown')}\n"
f"Severity: {props.get('severity', 'Unknown')}\n"
f"Status: {props.get('status', 'Unknown')}\n"
f"Headline: {props.get('headline', 'No headline')}\n"
"---"
)

@server.call_tool()
async def handle_call_tool(
name: str, arguments: dict | None
) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
"""
Handle tool execution requests.
Tools can fetch weather data and notify clients of changes.
"""
if not arguments:
raise ValueError("Missing arguments")

if name == "get-alerts":
state = arguments.get("state")
if not state:
raise ValueError("Missing state parameter")

# Convert state to uppercase to ensure consistent format
state = state.upper()
if len(state) != 2:
raise ValueError("State must be a two-letter code (e.g. CA, NY)")

async with httpx.AsyncClient() as client:
alerts_url = f"{NWS_API_BASE}/alerts?area={state}"
alerts_data = await make_nws_request(client, alerts_url)

if not alerts_data:
return [types.TextContent(type="text", text="Failed to retrieve alerts data")]

features = alerts_data.get("features", [])
if not features:
return [types.TextContent(type="text", text=f"No active alerts for {state}")]

# Format each alert into a concise string
formatted_alerts = [format_alert(feature) for feature in features[:20]] # only take the first 20 alerts
alerts_text = f"Active alerts for {state}:\n\n" + "\n".join(formatted_alerts)

return [
types.TextContent(
type="text",
text=alerts_text
)
]
elif name == "get-forecast":
try:
latitude = float(arguments.get("latitude"))
longitude = float(arguments.get("longitude"))
except (TypeError, ValueError):
return [types.TextContent(
type="text",
text="Invalid coordinates. Please provide valid numbers for latitude and longitude."
)]

# Basic coordinate validation
if not (-90 <= latitude <= 90) or not (-180 <= longitude <= 180):
return [types.TextContent(
type="text",
text="Invalid coordinates. Latitude must be between -90 and 90, longitude between -180 and 180."
)]

async with httpx.AsyncClient() as client:
# First get the grid point
lat_str = f"{latitude}"
lon_str = f"{longitude}"
points_url = f"{NWS_API_BASE}/points/{lat_str},{lon_str}"
points_data = await make_nws_request(client, points_url)

if not points_data:
return [types.TextContent(type="text", text=f"Failed to retrieve grid point data for coordinates: {latitude}, {longitude}. This location may not be supported by the NWS API (only US locations are supported).")]

# Extract forecast URL from the response
properties = points_data.get("properties", {})
forecast_url = properties.get("forecast")

if not forecast_url:
return [types.TextContent(type="text", text="Failed to get forecast URL from grid point data")]

# Get the forecast
forecast_data = await make_nws_request(client, forecast_url)

if not forecast_data:
return [types.TextContent(type="text", text="Failed to retrieve forecast data")]

# Format the forecast periods
periods = forecast_data.get("properties", {}).get("periods", [])
if not periods:
return [types.TextContent(type="text", text="No forecast periods available")]

# Format each period into a concise string
formatted_forecast = []
for period in periods:
forecast_text = (
f"{period.get('name', 'Unknown')}:\n"
f"Temperature: {period.get('temperature', 'Unknown')}°{period.get('temperatureUnit', 'F')}\n"
f"Wind: {period.get('windSpeed', 'Unknown')} {period.get('windDirection', '')}\n"
f"{period.get('shortForecast', 'No forecast available')}\n"
"---"
)
formatted_forecast.append(forecast_text)

forecast_text = f"Forecast for {latitude}, {longitude}:\n\n" + "\n".join(formatted_forecast)

return [types.TextContent(
type="text",
text=forecast_text
)]
else:
raise ValueError(f"Unknown tool: {name}")

async def main():
# Run the server using stdin/stdout streams
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="weather",
server_version="0.1.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
)

# This is needed if you'd like to connect to a custom client
if __name__ == "__main__":
asyncio.run(main())

这段代码中,最核心的其实就是@server.list_tools() 以及 @server.call_tool() 这两个注解。

@server.list_tools() - 注册用于列出可用工具的处理器
@server.call_tool() - 注册用于执行工具调用的处理器

调用函数的逻辑也比较简单,匹配到对应的工具名称,然后抽取对应的输入参数,然后发起api的请求,对获得的结果进行处理:

async def main():
# Run the server using stdin/stdout streams
async with mcp.server.stdio.stdio_server() as (read_stream, write_stream):
await server.run(
read_stream,
write_stream,
InitializationOptions(
server_name="weather",
server_version="0.1.0",
capabilities=server.get_capabilities(
notification_options=NotificationOptions(),
experimental_capabilities={},
),
),
)

# This is needed if you'd like to connect to a custom client
if __name__ == "__main__":
asyncio.run(main())

(4)服务端与客户端交互

测试服务器与 Claude for Desktop。【2】也给出了构建MCP 客户端的教程。其中核心的逻辑如下:

async def process_query(self, query: str) -> str:
"""Process a query using Claude and available tools"""
messages = [
{
"role": "user",
"content": query
}
]

response = await self.session.list_tools()
available_tools = [{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema
} for tool in response.tools]

# Initial Claude API call
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=messages,
tools=available_tools
)

# Process response and handle tool calls
final_text = []

assistant_message_content = []
for content in response.content:
if content.type == 'text':
final_text.append(content.text)
assistant_message_content.append(content)
elif content.type == 'tool_use':
tool_name = content.name
tool_args = content.input

# Execute tool call
result = await self.session.call_tool(tool_name, tool_args)
final_text.append(f"[Calling tool {tool_name} with args {tool_args}]")

assistant_message_content.append(content)
messages.append({
"role": "assistant",
"content": assistant_message_content
})
messages.append({
"role": "user",
"content": [
{
"type": "tool_result",
"tool_use_id": content.id,
"content": result.content
}
]
})

# Get next response from Claude
response = self.anthropic.messages.create(
model="claude-3-5-sonnet-20241022",
max_tokens=1000,
messages=messages,
tools=available_tools
)

final_text.append(response.content[0].text)

return "\n".join(final_text)

启动客户端,需要打开 Claude for Desktop 应用配置文件:

~/Library/Application Support/Claude/claude_desktop_config.json

如果该文件不存在,确保先创建出来,然后配置以下信息,以示例说明,我们uv init的是weather,所以这里mcpServers配置weather的服务,args中的路径设置为你weather的绝对路径。

{
"mcpServers": {
"weather": {
"command": "uv",
"args": [
"--directory",
"/ABSOLUTE/PATH/TO/PARENT/FOLDER/weather",
"run",
"server.py"
]
}
}
}

保存文件,并重新启动 Claude for Desktop。可以看到Claude for Desktop 能够识别在天气服务器中暴露的两个工具。

然后在客户端询问天气,会提示调用get-forecast的tool:

3、MCP到底解决了什么问题

工具是智能体框架的重要组成部分,允许大模型与外界互动并扩展其能力。即使没有MCP协议,也是可以实现LLM智能体,只不过存在几个弊端,当有许多不同的 API 时,启用工具使用变得很麻烦,因为任何工具都需要:手动构建prompt,每当其 API 发生变化时手动更新【3,4】。

如下图所示:

MCP其实解决了当存在大量工具时,能够自动发现,并自动构建prompt。

整体流程示例:
(1)以总结git项目最近5次提交为例,MCP 主机(与客户端一起)将首先调用 MCP 服务器,询问有哪些工具可用。

MCP 主机:像 Claude Desktop、IDE 或其他 AI 工具等程序,希望通过 MCP 访问数据。
MCP 客户端:与服务器保持 1:1 连接 的协议客户端。

(2)MPC 客户端接收到所列出的可用工具后,发给LLM,LLM 收到信息后,可能会选择使用某个工具。它通过主机向 MCP 服务器发送请求,然后接收结果,包括所使用的工具。

(3)LLM 收到工具处理结果(包括原始的query等信息),之后就可以向用户输出最终的答案。

总结起来,就一句话,MCP协议其实是让智能体更容易管理、发现、使用工具。

文章转载自:【大模型实战篇】基于Claude MCP协议的智能体落地示例

#你可能也喜欢这些API文章!

我们有何不同?

API服务商零注册

多API并行试用

数据驱动选型,提升决策效率

查看全部API→
🔥

热门场景实测,选对API

#AI文本生成大模型API

对比大模型API的内容创意新颖性、情感共鸣力、商业转化潜力

25个渠道
一键对比试用API 限时免费

#AI深度推理大模型API

对比大模型API的逻辑推理准确性、分析深度、可视化建议合理性

10个渠道
一键对比试用API 限时免费