
Python与Ollama的开发案例
随着云原生与智能化趋势加速,C#工程师在AI面试中不仅需掌握深度学习与机器学习基础,更要熟悉ML.NET框架、微服务架构及容器化部署。招聘方高频考察三大维度:
本文将结合YouTube精选视频与实战案例,提供完整的面试答题模板与项目示例,帮助C#工程师在AI面试中脱颖而出。
var mlContext = new MLContext(seed: 123);
var data = mlContext.Data.LoadFromTextFile < Input > ("data.csv", hasHeader: true, separatorChar: ',');
var pipeline = mlContext.Transforms.ReplaceMissingValues("Features")
.Append(mlContext.Transforms.Categorical.OneHotEncoding("Category"))
.Append(mlContext.Transforms.Concatenate("Features", "Feature1", "Feature2", "Category"))
.Append(mlContext.Transforms.NormalizeMinMax("Features"));
var trainer = mlContext.Regression.Trainers.FastTree(labelColumnName: "Label", featureColumnName: "Features");
var model = pipeline.Append(trainer).Fit(data);
var predictions = model.Transform(data);
var metrics = mlContext.Regression.Evaluate(predictions, labelColumnName: "Label");
Console.WriteLine($"RMSE: {metrics.RootMeanSquaredError:F2}");
var experiment = mlContext.Auto().CreateRegressionExperiment(maxTimeInSeconds: 60);
var result = experiment.Execute(data, labelColumnName: "Label");
Console.WriteLine($"最佳模型:{result.BestRun.TrainerName}, RMSE: {result.BestRun.ValidationMetrics.RootMeanSquaredError:F2}");
[ApiController]
[Route("api/[controller]")]
public class PredictController : ControllerBase {
private static PredictionEnginePool < Input, Output > _predictionEnginePool;
public PredictController(PredictionEnginePool < Input, Output > pool) = > _predictionEnginePool = pool;
[HttpPost]
public ActionResult < Output > Post([FromBody] Input input) = >
Ok(_predictionEnginePool.Predict(modelName: "Model", example: input));
}
Docker多阶段构建:
FROM mcr.microsoft.com/dotnet/aspnet:7.0 AS base
WORKDIR /app
COPY --from=build /app/publish .
ENTRYPOINT ["dotnet", "YourApp.dll"]
Kubernetes部署:
apiVersion: apps/v1
kind: Deployment
metadata: { name: ai-model-deployment }
spec:
replicas: 3
selector: { matchLabels: { app: ai-model } }
template:
metadata: { labels: { app: ai-model } }
spec:
containers:
- name: ai-model
image: yourrepo/ai-model:latest
resources: { limits: { cpu: "500m", memory: "512Mi" } }
ports: [ { containerPort: 80 } ]
imagePullSecrets: [{ name: regcred }]
/metrics
端点,记录QPS、延迟、错误率;问题 | 答案要点 |
---|---|
ML.NET与TensorFlow的区别? | ML.NET原生集成.NET生态,支持C#快速开发;TensorFlow更强大但需Python或ONNX桥接。 |
如何处理模型推理的并发安全? | 使用PredictionEnginePool或自定义线程池管理,避免多线程竞争; |
如何优化模型推理性能? | 模型压缩(ONNX量化)、缓存常见请求、批量推理、异步队列处理; |
如何应对数据不平衡问题? | 权重调整、过采样(SMOTE)、欠采样、阈值移动; |
如何设计模型监控与告警? | Prometheus+Grafana可视化,Alertmanager设置延迟/错误报警,分布式追踪查看调用链; |
AutoML适合何种场景? | 快速原型、模型对比与调参;对于需求明确、追求高性能的生产环境建议手动调优。 |
.zip
;通过本文的C# AI面试指南,你将具备理论深度与实战经验,并能在面试中展现出卓越的机器学习与.NET项目实战能力。祝你面试成功,开启AI+ .NET工程师的新篇章!