
模型压缩四剑客:量化、剪枝、蒸馏、二值化
面试官会关注你在这三大领域的综合能力,以下内容将带你逐一攻破。
in
操作、字典与集合的哈希性能。示例:最长无重复子串
def lengthOfLongestSubstring(s: str) - > int:
start = max_len = 0
used = {}
for i, ch in enumerate(s):
if ch in used and used[ch] > = start:
start = used[ch] + 1
used[ch] = i
max_len = max(max_len, i - start + 1)
return max_len
collections.deque
替代 list
的 pop(0)
;bisect
维护有序列表;functools.lru_cache
实现递归缓存;list
, set
, dict
, deque
。from lime.lime_tabular import LimeTabularExplainer
explainer = LimeTabularExplainer(X_train, feature_names=...)
exp = explainer.explain_instance(X_test[0], model.predict_proba)
exp.show_in_notebook()
import shap
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X_test)
shap.summary_plot(shap_values, X_test)
> 面试备考:区分 LIME 与 SHAP 的局部/全局解释优势及适用场景。
功能 | 库或工具 |
---|---|
数据处理 | pandas, numpy |
模型训练 | scikit-learn, TensorFlow, PyTorch |
XAI 可解释 | lime, shap |
API 服务 | FastAPI, Flask |
容器化与部署 | Docker, Kubernetes |
/recommend
接口;@app.get('/recommend')
def recommend(user_id: int):
user_vec = compute_user_vec(user_id)
recs = recommend_items(user_vec)
shap_vals = explainer.shap_values(user_vec.reshape(1,-1)).tolist()
return {'recommendations': recs, 'explanation': shap_vals}
优化策略:
祝你在 Python AI 岗面试中旗开得胜,早日拿下心仪 Offer!